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Ø Why do we need to study remnant planetesimals
(a.k.a planetary embryos a.k.a protoplanets)?

Ø How do we study them?

Ø Dawn at Vesta

Ø Dawn at Ceres

Ø Future data
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Planet formation
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

① Formation of a 
nebula disk

② Settling to mid-
plane

③ Dust coagulation

④ Orderly growth

⑤ Run-away growth

⑥ Gas dispersal 

⑦ Late-state mergers

⑧ Present state
Safronov & Ruskol 1994
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④ Orderly growth
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⑦ Late-state mergers

⑧ Present state
Vesta, Ceres, other 
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Safronov & Ruskol 1994
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A spectrum of protoplanet internal structure
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Weiss & Elkins-Tanton, 2013

Ø What was the differentiation state of planetesimals?
• Differentiated or undifferentiated?
• How much water?

Ø What can interior structure tell us about the accretion process?
• Fast or slow
• Early or late



How do we study a planetary interior with 
gravity and topography?
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Ø We study the interior but looking at its response 
to various forcings such as:

• Rotation

• Tides

• Surface loads

• Subsurface loads



Hydrostatic equilibrium
Ø In hydrostatic equilibrium
• Surfaces of constant density, pressure and 

potential coincide
• No shear stresses 
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Ø In hydrostatic equilibrium

JPL post-doc seminar 10
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ρ = ρ(r), ω

Ø Not in hydrostatic equilibrium

very hard

hard

easy
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Hydrostatic equilibrium
Ø In hydrostatic equilibrium



Spherical Harmonics
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Ø Shape

Ø Gravitational potential

U – gravitational potential 
φ – latitude
λ – longitude
r – radial distance
n – degree
m – order
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Spherical Harmonics
Ø Shape

Ø Gravitational potential

gravity

topography

Ø RMS spectrum
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Topography power spectrum and Kaula rule

planets & icy 
moons

Ermakov et al., 2018a

Stress perturbation 
due to topography h

Topography 
power spectrum

Kaula rule 



Gravity anomalies
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• Free-air anomaly σFA = σobs – σmodel

σmodel = gravity of 
hydrostatic figure 
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• Free-air anomaly

• Bouguer anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

ρ



Gravity anomalies
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• Free-air anomaly

• Bouguer anomaly

• Isostatic anomaly

σFA = σobs – σmodel

σBA = σobs – σmodel

σIA = σobs – σmodel

σmodel =

σmodel =

σmodel =

gravity of 
hydrostatic figure 

gravity of shape 
assuming ρ

gravity assuming 
isostasy for ρ1, ρ2, h

h – depth of 
compensation

ρ1

ρ2

ρ



Example: uncompensated topography
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Isostasy: no lateral pressure 
gradients at certain depth, and 
therefore, no lateral flow.



Example: compensated topography
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Example: supercompensated topography
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Admittance

Non-linear
two-layer isostatic

Zn - gravity-topography admittance

surface load

JPL post-doc seminar



25

Admittance

Non-linear
two-layer isostatic

Zn - gravity-topography admittance

surface load

JPL post-doc seminar

Homogeneous



26

Admittance

Non-linear
two-layer isostatic

Zn - gravity-topography admittance

surface load
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Two-layer
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Admittance

Non-linear
two-layer isostatic

Zn - gravity-topography admittance

JPL post-doc seminar

Homogeneous

Two-layer

Isostatic
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Isostatic compensation

Ø Example of a spherical cap (depression) relaxation

compensated

uncompensated

Interface evolution Admittance evolution 
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Higher density
outside

Higher 
density
inside

low Z
low I
high γ

high Z
high I
high γ

low γ

Z – Admittance
I – Mean moment of inertia
γ – Gravity-topography 
correlation

Homogeneou
s Laterally 

heterogeneous
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What did we know before Dawn?

McCord and Sotin, 2005Ruzicka et al., 1997

Vesta Ceres

NAML

NAML



McCord and Sotin, 2005Ruzicka et al., 1997

Vesta Ceres

NAML

NAML
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What did we know before Dawn?

• HED-meteorites enabled detailed 
geochemical modeling of Vesta

• Ceres interiors were essentially 
unconstrained
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Dawn geophysical data
• Shape model 

• Stereophotogrammetry (SPG) from DLR 
• Stereophotoclinometry (SPC) from JPL
• Mutually consistent with the accuracy much better 

than the spatial resolution of gravity field

• Gravity field
• Accurate up to n = 18 (λ=93 km) for Vesta

(Konopliv et al., 2014)
• Accurate up to n = 17 (λ=174 km) for Ceres

(Konopliv et al., 2017)

• Assumptions we have to make:
• Multilayer model with uniform density layers
• Range of core densities for Vesta
• Range of crustal densities from HEDs for Vesta
• Can’t really assume anything for Ceres
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Vesta and Ceres

Gaskell, 2012 Park et al., 2016
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Gaskell, 2012 Park et al., 2016

Vesta and Ceres
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Vesta and Ceres topography

Parameter Vesta Ceres
Equatorial flattening 0.0262 0.0043

Geoidal height range (km) 37.9 13.2

Geoidal height RMS (km) 5.2 2.1

Hypsograms of Vesta and Ceres

*Hypsogram is a fancy word for the 
“histogram of elevations”

Shape statistics

• Ceres is closer to hydrostatic 
equilibrium than Vesta

• Smoother topography at Ceres
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Flattening vs rotation rate

Ø Nearly homogeneous structure is 
implied for Ceres based on the 
shape flattening.

Ø However, gravity implies 
differentiation 

a
c

homogeneous
more oblate

differentiated

less oblate
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Early efficient viscous relaxation of Vesta

• Vesta was likely close to 
hydrostatic equilibrium in its 
early history (Fu et al., 2014).

• Vesta’s northern terrains likely 
reflect its pre-impact 
equilibrium shape.

• Major impact occurred when 
Vesta was effectively non-
relaxing leading to 
uncompensated Rheasilvia and 
Veneneia basins.
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Early efficient viscous relaxation of Vesta
Northern terrains
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Early efficient viscous relaxation of Vesta

di
se

qu
ili

br
iu

m
 fa

ct
or

Northern terrains

Southern basins



JPL post-doc seminar 40

Early efficient viscous relaxation of Vesta

di
se

qu
ili

br
iu

m
 fa

ct
or

Northern terrains

Southern basins



JPL post-doc seminar 41

Vesta Crustal Thickness
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Ermakov et al., 2014

Ø Crustal thickness inversion 
show a belt of thicker crust 
around the Southern 
Basins

Ø Crater counting reveals 
that the northern Vesta 
terrains are old (>3Gy)

Marchi et al., 2012
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Vesta Crustal Thickness
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Solving for Vesta’s internal structure
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𝞈
Ø Vary rotation rate
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𝞈
Ø Vary rotation rate

Ø Vary core size



Solving for Vesta’s internal structure
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𝞈
Ø Vary rotation rate

Ø Vary core size
• assuming equilibrium 

shape



Solving for Vesta’s internal structure
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𝞈
Ø Vary rotation rate

Ø Vary core size
• assuming equilibrium 

shape

Ø Match northern shape with 
the equipotential surface



Solving for Vesta’s internal structure

JPL post-doc seminar 48

𝞈
Ø Vary rotation rate

Ø Vary core size
• assuming equilibrium 

shape

Ø Match northern shape with 
the equipotential surface

Ø Match observed and 
modeled gravity coefficient 
J2



Solving for Vesta’s internal structure
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Contours are mantle density [kg/m3] 

Ermakov et al., 2014

Ø Can find a consistent solution 
for 4.83 < T < 4.93 hours

Ø Tpresent = 5.342



Solving for Vesta’s internal structure
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Core radius of 110 to 162 km

Contours are mantle density [kg/m3] 

Ermakov et al., 2014

Ø Can find a consistent solution 
for 4.83 < T < 4.93 hours

Ø Tpresent = 5.342
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Early efficient viscous relaxation of Vesta
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Summary on Vesta

Ø Once hot and hydrostatic, Vesta is no longer either 

Ø Formed early (< 5 My after CAI)

Ø Differentiated interior

Ø Most of topography acquired when Vesta was already 
cool => uncompensated topography

Ø Combination of gravity/topography data with 
meteoritic geochemistry data provides constraints on 
the internal structure
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Ceres expectations

• Bland et al., 2013 predicted 
that craters on Ceres would 
quickly relax in an ice-
dominated shell

o Equatorial warmer craters 
would relax faster than 
colder polar craters 

• Bland et al., 2016 did not find 
evidence for such relaxation 
pattern

o No latitude dependence of 
crater depth

Bland, 2013
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Ceres observation

• Bland et al., 2013 predicted 
that craters on Ceres would 
quickly relax in an ice-
dominated shell

o Equatorial warmer craters 
would relax faster than 
colder polar craters 

• Bland et al., 2016 did not find 
evidence for such relaxation 
pattern

o No latitude dependence of 
crater depth

Crater depth study
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Evidence for viscous relaxation

• More general approach: 
study topography power 
spectrum

• Power spectra for Vesta 
closely fits with the 
power law to the lowest 
degrees (λ < 750 km)

• Ceres power spectrum 
deviates from the power 
law at λ > 270 km
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Ermakov et al., 2017a
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Finite element model

• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

• Compute the evolution 
of the outer surface 
power spectrum

Fu et al., 2014; Fu et al., 2017
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Finite element model

• Assume a density and 
rheology structure

• Solve Stokes equation 
for an incompressible 
flow using deal.ii library

• Compute the evolution 
of the outer surface 
power spectrum

Fu et al., 2014; Fu et al., 2017



Ceres internal structure

63

• Two-layer model -
simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)2 = 0.392

Using Tricarico 2014 for computing hydrostatic 
equilibrium

green contours = C/Ma2

JPL post-doc seminar
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Ceres internal structure
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• Two-layer model -
simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)2 = 0.392

green contours = C/Ma2

Using Tricarico 2014 for computing hydrostatic 
equilibrium

JPL post-doc seminar
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Example of a FE modeling run

mantle

crust

× plastic failure location

relaxation in the frequency domain relaxation in the spatial domain
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Ice shell, rocky interior
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Ice shell, rocky interior
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Ice shell, rocky interior
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Ice shell, rocky interior

• Conclusion: relaxation is too fast
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Stiff surface, weak interior
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Stiff surface, weak interior

ηsurface= 6×1026 Pa s, decays 10x per 10 km
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Rheology and density constraints

Fu et al., 2017

Ermakov et al., 2017a
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Ø Ceres crust is ~ 1000 times 
stronger than water ice

Ø Must be dominated by rock-
like materials. Water ice in the 
Ceres’ crust <35 vol%

Ø Light and strong crust

Ø Low core density (2.4 g/cc) 
implies its hydrated state
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Fu et al., 2017

Ermakov et al., 2017a
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Rheology and density constraints

Ø Ceres crust is ~ 1000 times 
stronger than water ice

Ø Must be dominated by rock-
like materials. Water ice in the 
Ceres’ crust <35 vol%

Ø Light and strong crust

Ø Low core density (2.4 g/cc) 
implies its hydrated state
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Rheology and density constraints

Ø Ceres crust is ~ 1000 times 
stronger than water ice

Ø Must be dominated by rock-
like materials. Water ice in the 
Ceres’ crust <35 vol%

Ø Light and strong crust

Ø Low core density (2.4 g/cc) 
implies its hydrated state
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Compensation: Vesta vs Ceres
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Ø Homogeneous admittance 

Ø Isostatic model admittance 

D

Ø Effective density spectrum
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Compensation for Vesta and Ceres 

• Vesta topography is 
uncompensated

• Vesta acquired most of 
its topography when 
the crust was already 
cool and not-relaxing

• Ceres topography is 
compensated

• Lower viscosities (compared 
to Vesta) enabled relaxation
of topography to the isostatic 
state
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Local structures on Ceres
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Isostatic anomaly

Ermakov et al., 2017a



Ermakov et al., 2017
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Isostatic anomaly

Ermakov et al., 2017

Kerwan

Occator

Ahuna
Mons

Ermakov et al., 2017a
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Occator isostatic anomaly
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Mascons

Zuber et al., 2016

Bouguer anomaly in Orientale 
basin on the Moon

Kerwan isostatic anomaly 

Ermakov et al., 2017a
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Ahuna Mons
4 km

17 km

Ermakov et al., 2017a Park et al., 2019
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Permanently Shadowed Areas (PSRs)

Ermakov et al., 2017b

Ø Present-day obliquity ≈4°

Ø ≈2000 km2 are in 
permanent shadow

Ø Some polar craters have 
bright crater floor 
deposits
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Ermakov et al., 2017b

PSRs and Bright Crater Floor Deposits (BCFDs)

Ø Present-day obliquity ≈4°

Ø ≈2000 km2 are in 
permanent shadow

Ø Some polar craters have 
bright crater floor 
deposits
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Bright crater floor deposits (BCFDs)
NP4 NP5 NP7

NP19 NP26 SP1
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NP4 NP5 NP7
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Ceres Obliquity Evolution

C/MR2
vol=0.387

Ermakov et al., 2017b

Ø 8 planetary barycenters + Vesta and Ceres.
Ø Relativity is implemented as a velocity kick.
Ø Ceres full degree-2 field.
Ø Ceres moments of inertia constrained by degree-2 field
Ø Symplectic leap-frog integrator
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Ceres Obliquity Evolution
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PSR area shrinks at high obliquity

Ermakov et al., 2017b
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PSRs and bright crater floor deposits
NP4 NP5 NP7

NP19 NP26 SP1
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PSRs and bright crater floor deposits
NP4 NP5 NP7

NP19 NP26 SP1
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PSRs and bright crater floor deposits
NP4 NP5 NP7

NP19 NP26 SP1

Deutsch et al.,  2018
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PSRs and bright crater floor deposits

Ø The obliquity of Ceres undergoes large oscillations with the
main period of 25 ky, a maximum of 19.7° and a minimum
of 2.0°

Ø At εmax=20°, most of the present-day PSRs receive direct
sunlight.

Ø Correlation between bright deposits and the most
persistent PSRs

Ø Bright deposits likely consist of volatiles, either water
molecules from the exosphere or exposed ground ice.
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Vesta and Ceres comparative evolution
Vesta 

Ceres

Time

Presumably 
chondritic

chondritic + 
volatiles

Late accretion

Early accretion



Vesta and Ceres comparative evolution

JPL post-doc seminar 99
Time

Vesta 

Ceres

Presumably 
chondritic

chondritic + 
volatiles

Liquid 
ocean

Extensive water-
rock interactionsLate accretion

Early accretion
magma ocean and 

differentiation



JPL post-doc seminar 10
0

Vesta and Ceres comparative evolution

Time

Vesta 

Ceres

Fe, Ni

Ol

HEDLiquid 
ocean

Presumably 
chondritic

chondritic + 
volatiles

Extensive water-
rock interactions

magma ocean and 
differentiation

giant impact into 
cool Vesta

Late accretion

Early accretion

Ocean freezing 
ice-rich crust erosion



JPL post-doc seminar 10
1

Vesta and Ceres comparative evolution

?

Time

Vesta 

Ceres

Fe, Ni

Ol
Fe, Ni

Ol

hydrated salts 
water ice, rock

Presumably 
chondritic

chondritic + 
volatiles

Liquid 
ocean hydrated

outer core

Extensive water-
rock interactions Present-stateExtensive water-
rock interactions

Ocean freezing 
ice-rich crust erosionLate accretion

Early accretion
magma ocean and 

differentiation

HED

giant impact into 
cool Vesta

HED

Present-state



A spectrum of planetesimal differentiation
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Weiss & Elkins-Tanton, 2013



Ø Cooler history
• late formation 
• and/or heat transfer due to hydrothermal circulation

Ø Partially differentiated interior 
Ø Experienced viscous relaxation
Ø Much lower surface viscosities (compared to Vesta) allowed 

compensated topography 
Ø Ceres’ crust is light (based on admittance analysis) and strong 

(based on FE relaxation modeling)
Ø Not much water ice in Ceres crust (<35 vol%) now
Ø Cold trapping of volatiles at polar craters

Summary
Ø Formed early (< 5 My after CAI)
Ø Once hot and hydrostatic, Vesta is no longer either 
Ø Differentiated interior
Ø Most of topography acquired when Vesta was already cool

• uncompensated topography
Ø Combination of gravity/topography data with meteoritic 

geochemistry data provides constraints on the internal 
structure

JPL post-doc seminar 10
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Bennu & Ryugu
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• Surface slopes

• Constraints on the internal 
density distribution 

• The rotational state 

• YORP estimate

• Model of the Yarkovsky effect

Ryugu
Credit: JAXA

Bennu
Credit: NASA-GSFC/University of Arizona



Psyche
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• Psyche has a metal surface 
based on radar albedo data 
(Ostro et al., 1985)

• Psyche density is 4500 +/-
1500 kg/m3 (Shepard et al., 
2017)

• Leading hypothesis: Psyche is 
a planetesimal core

• Key questions of the gravity 
investigation of Psyche:
• density
• differentiation



Phobos & Deimos
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Ø Phobos’ and Deimos’ origins are unknown despite 
> century of research

Ø Martian moons are targets of JAXA’s MMX mission
Ø Three leading hypotheses

• In-situ formation (e.g. Burnes, 1972)
• Capture  (e.g. Murchie et al., 1999)
• Re-accretion after giant impact (e.g. Citron et 

al., 2015)
Ø Key gravity science questions:

• Internal structure 
• Central density concentration
• Lateral density variations  

data interior origin

No unique interpretation
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Higher density
outside

Higher 
density
inside

low
ρeff
low I
high γ

high 
ρeff
high I
high γ

low γ

ρeff – Effective density
I – Mean moment of inertia
γ – Gravity-topography 
correlation

Homogeneou
s Laterally 

heterogeneous



Mascons on Ceres
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Bland et al., 2018

Observed anomaly
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Bland et al., 2018

Mantle uplift

Devolatilized plug

Observed anomaly



Mascons on Ceres
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Bland et al., 2018

Mantle uplift
∆𝞀 ≈ 1.2 g/cc

Modeled anomaly



Mascons on Ceres
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Bland et al., 2018

Mantle uplift

Devolatilized plugDevolatilized plug
∆𝞀 ≈ 0.1 - 0.2 g/cc

Modeled anomaly



Crustal composition constraints
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Ermakov et al., 2017



Internal structures of Vesta and Ceres

HED-
dominated 

crust

Ceresè
Ø Crust is light (1.1-1.4 g/cc) 

and mechanically rock-
like w

Ø Mantle density ~2.4 g/cc 
and unlithified at least to a 
depth of 100 km

Ø Possible dehydrated rocky 
core remains 
unconstrained

çVesta
Ø Crustal density constrained by HEDs and 

admittance (2.8 g/cc)

Ø Assuming density of iron meteorites (5-8 
g/cc), the core radius is 110 – 155 km

Olivine-rich 
mantle

Fe, Ni-rich 
core

Salts, 
clathrates, 
water ice,
serpentine 

philosilicates

hydrated rocky 
mantle

dehydrated
core ?
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Two-layer model
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• Simplest model to 
interpret the gravity-
topography data

• Only 5 parameters: 
two densities, two 
radii and rotation 
rate

• Yields C/Ma2 = 0.373
C/M(Rvol)2 = 0.392

Using Tricarico 2014 for computing 
hydrostatic equilibrium

green contours = C/Ma2



Latitude dependence of relaxation
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Ermakov et al., in prep

more relaxed 
equatorial 
topography



Gravity and topography in spherical harmonics

JPL post-doc seminar 11
6

U r,φ,λ( ) = GM
R

1+ R0
r

!

"
#

$

%
&
n

Cnm cos mλ( )+ Snm sin mλ( )( )Pnm sinφ( )
m=0

n

∑
n=2

∞

∑
)

*
+
+

,

-
.
.

r φ,λ( ) = R0 Anm cos mλ( )+Bnm sin mλ( )( )Pnm sinφ( )
m=0

n

∑
n=1

∞

∑
#

$
%

&

'
(

• Shape radius vector

• Gravitational potential

S
n

gg =
C2

nm + S
2
nm

2n+1m=0

n

∑

• Power Spectral Density  

S
n

tt =
A2nm +B

2
nm

2n+1m=0

n

∑ S
n

gt =
AnmCnm +BnmSnm

2n+1m=0

n

∑
gravity topography gravity-topography

cross power



Isostatic model
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Non-linear
two-layer isostatic

Two-layer hydrostatic

Ø Linear isostatic model

Zn - gravity-topography admittance

Ø Linear two-layer hydrostatic model

Zn =
GM
R3

3(n+1)
2n+1

ρcrust
ρmean

1− 1−
Dcomp
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,
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Sgt
Stt

Zn =
GM
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Dcomp Dcomp- depth of 
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surface load

Observed



Why Vesta?
• Unique basaltic spectrum
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Why Vesta?
• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta
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0

Image credit: NASA/HST

Thomas et al., 1997



Why Vesta?
• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra
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é Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

ê V-type asteroids spectra from Hardensen et 
al., (2014)



Why Vesta?
• Unique basaltic spectrum

• A group of asteroids in the 
dynamical vicinity of Vesta 
with similar spectra

• Large depression in the 
southern hemisphere of Vesta

• A group of Howardite-Eucrite-
Diogenite (HED) meteorites, 
with similar reflectance 
spectra

• Strongest connection between 
a class of meteorites and an 
asteroidal family

JPL post-doc seminar 12
2

é Reflectance spectra of eucrite Millbillillie
from Wasson et al. (1998)

ê V-type asteroids spectra from Hardensen et 
al., (2014)



Note on Vening-Meinesz and Kaula rules
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• Vening-Meinesz rule for variance of topography (Vening-
Meinesz, 1951)

• Kaula law for RMS of gravity (Kaula, 1963)

Vt ~ 1/n2

Mg ~ 1/n2

Vt ~ 1/n2  => Mt ~ 1/n1.5 => Mg ~ 1/n2.5

• Are these two rules consistent assuming uncompensated 
topography?

• But Kaula rule says Mg ~ 1/n2 NOT Mg ~ 1/n2.5

• Typically assumed in the literature Kaula and Vening-Meinesz rules 
are not mutually consistent assuming uncompensated topography 



RMS spectra
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AsteroidsPlanets

• We resample power spectra at uniformly spaced intervals in log10𝜆
• We compute power law fits only for the uncompensated end (circles) of the 

power spectra.
• We also don’t include the end of the Vesta spectrum because we suspect it is 

approaching shape model resolution.



Power laws
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• General form of a power law • Power law assuming (inverse) surface 
gravity scaling (g ~ R*𝛒)

• If we take a log10 of M, we get an equation of a hyperplane 

• In our data set, we have a lot of points along the 𝜆 direction and not as many points 
on the other two (R and 𝛒) directions. 
• In the R and 𝛒 directions, we have as many data points as we have bodies
• In the 𝜆 direction, we have as many data points as many we have 𝜆 bins.



Results of the MCMC runs
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Planets, gravity scaling
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Planets, gravity scaling
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𝝌𝐫𝐞𝐝𝟐 =491

Not a very good fit

circles = best-fit model
dots with errorbars = data

𝝺

• We compare best-fit model (such A, 𝛂3 that minimize the misfit) against data



Planets, general scaling
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Planets, general scaling
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𝝌𝐫𝐞𝐝𝟐 =101

Somewhat better 
but still a bad fit

circles = best-fit model
dots with errorbars = data

𝝺

• We compare best-fit model (such A, 𝛂1, 𝛂2, 𝛂3 that minimize the misfit) against data



Asteroids, gravity scaling
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Asteroids, gravity scaling
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𝝌𝐫𝐞𝐝𝟐 =47

Somewhat better 
but still a bad fit

circles = best-fit model
dots with errorbars = data

𝝺

• We compare best-fit model (such A, 𝛂3 that minimize the misfit) against data



Asteroids, general scaling
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Asteroids, general scaling

JPL post-doc seminar 13
4

𝝌𝐫𝐞𝐝𝟐 =11

Much better fit.

circles = best-fit model
dots with errorbars = data

𝝺

• We compare best-fit model (such A, 𝛂1, 𝛂2, 𝛂3 that minimize the misfit) against data



A priori constraint on gravity RMS
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Choose R and 𝝆

Given R and 𝝆 and a range of 
𝝀, sample multivariate 
normal distribution to get A, 
𝜶1,𝜶2,𝜶3

Given A, 𝜶1,𝜶2,𝜶3, compute 
topography RMS spectrum 

Given topography RMS 
spectrum, generate SH 
coefficients that follow the 
chosen spectrum 

Compute gravity-from-
topography using Wieczorek
& Phillips 1998 until 
convergence w.r.t. to the 
power of topography

Find the upper and lower 
bounds on the gravity RMS 
spectum



Summary
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• Topography RMS spectra of 4 terrestrial planets and the 
Moon cannot be simultaneously fit with a single power law 
of the gravity-scaling or general form.

• Topography RMS spectra of asteroids CANNOT be 
satisfactorily fit with a power law the gravity-scaling form.

• Topography RMS spectra of asteroids CAN be satisfactorily
fit with a power law of the general form.

• Despite having different internal structure, composition and 
mechanical properties of the surface layer, the asteroid 
topography spectra can be effectively modeled as a general 
power law



Gravity RMS spectra
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-2 and -3 slopes are 
shown are red and 
blue lines

• Let’s look at how the slope of the gravity RMS 
spectrum varies by doing linear piece-wise fits.



Slopes of piecewise fitted gravity RMS spectra
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• Actually, the RMS spectra slopes vary quite a bit.



Ceres’ obliquity history
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Ermakov et al., in prep. for GRL

• Obliquity varies between 2.4° and 19.7°
• The main period is 24.5 ky
• We happen to visit Ceres when its obliquity is minimal



Bright Crater Floor Deposits (BCFDs)
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Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds
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1

Vesta
Ceres

Ceres location in the asteroid belt



Why Ceres?

• Largest body in the asteroid 
belt

• Low density implies high 
volatile content 

• Conditions for subsurface 
ocean

• Much easier to reach than 
other ocean worlds

• Major unexplored object in 
the asteroid belt
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Vesta
Ceres

Ceres location in the asteroid belt



What did we know before Dawn

• Castillo-Rogez and McCord 2010
Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.
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later differentiated into a water mantle and a mostly anhydrous 
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• Zolotov 2009
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What did we know before Dawn

• Castillo-Rogez and McCord 2010
Ceres accreted as a mixture of ice and rock just a few My after the 
condensation of Calcium Aluminum-rich Inclusions (CAIs), and 
later differentiated into a water mantle and a mostly anhydrous 
silicate core.

• Zolotov 2009
Ceres formed relatively late from planetesimals consisting of 
hydrated silicates. 

• Bland 2013
If Ceres does contain a water ice layer, its warm diurnally-
averaged surface temperature ensures extensive viscous 
relaxation of even small impact craters especially near equator

JPL post-doc seminar 14
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Buoyancy-driven anomaly

Ermakov et al., 2017
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Mascons

Kerwan isostatic anomaly 

Ermakov et al., 2017 Bland et al., 2018
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Mascons

Devolatilized plug
∆𝞀 ≈ 0.1 - 0.2 g/cc

Mantle uplift
∆𝞀 ≈ 1.2 g/cc

Kerwan isostatic anomaly 

Bland et al., 2018Ermakov et al., 2017
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Gravitational slope

Physical surface

Surface normal
Local gravitational 

acceleration vector

Gravitational slope
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Ermakov et al., 2014
JPL post-doc seminar

Gravitational slopes of Vesta
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Gravitational slopes of Vesta

Ermakov et al., 2014
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Angles of repose

Beakawi Al Hashemi et al., 2018
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Angle of repose and surface gravity

from Kleinhans et al., 2011

Result of the experiment:
• Static angle of repose 

increased at lower gravity
• Dynamic angle of repose 

decreased at lower gravity

JPL post-doc seminar
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Distributions of slopes

JPL post-doc seminar

Kink at ~35 deg
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Distributions of slopes

JPL post-doc seminar
Ermakov et al., in prep
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Distributions of slopes

Body angle of repose inferred 
from kink

Vesta 34.5

Ceres 34.1

Mars 30.7

Moon 29.5

Ermakov et al., in prep
JPL post-doc seminar



15
9

Terrestrial dunes
White Sand National Monument, New Mexico
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Terrestrial dunes
White Sand National Monument, New Mexico

JPL post-doc seminar
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Martian dunes

Herschel crater
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Martian dunes
Crater Southwest of Herschel Crater
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Distribution of slopes on dunes

Dynamic angle of repose

Ermakov et al., in prep
JPL post-doc seminar

• For granular materials, the 
shape of the slope 
histogram does reflect the 
angle of repose
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Distributions of slopes
• Vesta and Ceres have a higher angle of repose (𝛟) than Mars and the Moon

• 𝛟Vesta=35°; 𝛟Ceres=34°; 𝛟Mars =31°; 𝛟Moon =30°
• If interpreted as the dynamic angle of repose, contradicts experiments 

by Kleinhans et al., 2011 
• Surface gravity? Composition? Particle shape?

JPL post-doc seminar
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Differential slope Physical surface

Fit to the profile over 
longer baseline

Fit to the profile over 
shorter baseline

Differential slope

• By computing differential slopes, we subtract longer wavelength 
topography variations

• In other words, differential slope within a flat but highly inclined 
cliff is zero

Points at which surface 
is measured

JPL post-doc seminar
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Roughness definition
Histogram of differential slopes

• Roughness = 
interquartile width

JPL post-doc seminar
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Vesta SPC roughness composite 
B=1065m/497m

Ermakov et al., in prep
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Vesta SPC roughness composite 
G=2769m/1349m

Ermakov et al., in prep
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Vesta SPC roughness composite 
R=7313/3621 m

Ermakov et al., in prep
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Vesta SPC roughness composite 
B=1065m/497m G=2769m/1349m R=7313/3621 m

Ermakov et al., in prep

JPL post-doc seminar
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North-South dichotomy
B=1065m/497m G=2769m/1349m R=7313/3621 m

• North-South dichotomy in Vesta 
roughness

• Rheasilvia and Veneneia
resurfaced the southern 
hemisphere

Ermakov et al., in prep

JPL post-doc seminar
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Smooth ejecta blankets
B=1065m/497m G=2769m/1349m R=7313/3621 m

• Smooth ejecta blankets around 
young, fresh craters

Ermakov et al., in prep

JPL post-doc seminar
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Divalia Fossa
B=1065m/497m G=2769m/1349m R=7313/3621 m

• Divalia Fossa have a low 
roughness

• Saturnalia Fossa are not visible

Ermakov et al., in prep

JPL post-doc seminar
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Marcia

• Marcia is the only crater with 
rough interiors (floor and walls)

Ermakov et al., in prep

JPL post-doc seminar

B=1065m/497m G=2769m/1349m R=7313/3621 m
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Ceres SPC roughness composite 
B=1230/574 m

Ermakov et al., in prep
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Ceres SPC roughness composite 
G=3198/1558 m 

Ermakov et al., in prep
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Ceres SPC roughness composite 
R=7134/3526 m

Ermakov et al., in prep
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Ceres SPC roughness composite 
B=1230/574 m G=3198/1558 m R=7134/3526 m

Ermakov et al., in prep

JPL post-doc seminar
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Smooth ejecta blankets

• Again, smooth ejecta blankets 
around young, fresh craters that 
correlate with smooth crater 
interiors

• Only for big craters (>30 km)

Ermakov et al., in prep

JPL post-doc seminar

B=1230/574 m G=3198/1558 m R=7134/3526 m
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Smooth ejecta blankets (Dantu)
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Lunar roughness

Kreslavsky et al., 2013
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Mercury roughness

Kreslavsky et al., 2014
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Lineaments

• Unlike Vesta, Ceres roughness 
map is abundant with 
lineaments

Ermakov et al., in prep

JPL post-doc seminar

B=1230/574 m G=3198/1558 m R=7134/3526 m
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B=1230/574 m Lineaments
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Example of a  roughness lineament on Ceres
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Example of a  roughness lineament on Ceres

JPL post-doc seminar

Pasckert et al., 2017
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Large basins

• Kerwan is not 
visible in roughness • Urvara and Yalode

are clearly visible 
in roughness

Ermakov et al., in prep

JPL post-doc seminar

B=1230/574 m G=3198/1558 m R=7134/3526 m
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Kerwan
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Urvara and Yalode
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Diffuse low roughness region

• Diffuse low roughness region 
broadly correlates with low crater 
density area

Ermakov et al., in prep

JPL post-doc seminar
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Conclusions• Vesta and Ceres may have a higher angle of repose (𝛟) than Mars and the 
Moon
• 𝛟Vesta=35°; 𝛟Ceres=34°; 𝛟Mars =31°; 𝛟Moon =30°
• If interpreted as the dynamic angle of repose, contradicts experiments by 

Kleinhans et al., 2011 
• Surface gravity? Composition? Particle shape?

• Roughness dichotomy on Vesta and only regional scale variations on Ceres

• Smooth ejecta blankets on Vesta and Ceres as opposed to rough ejecta 
blankets on Moon and Mercury

• Abundant ejecta rays on Ceres and absence thereof on Vesta
• Easier to produce topographically-expressed secondaries on Ceres?
• Could be caused by different surface composition and/or different impact 

velocity of the secondaries (vesc,vesta=0.36 km/s, vesc,ceres=0.51 km/s)
• Curving ejecta rays due to rotation on Ceres

• Produced roughness maps could aid geologic mapping of Vesta and Ceres

JPL post-doc seminar
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XM2 results
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XM2 results: degree strength

JPL post-doc seminar



19
4

XM2 results: isostatic anomaly
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XM2 results:
Correlation and admittance
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XM2 results:
Correlation and admittance
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XM2 results: Isostatic anomaly
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XM2 results: MCMC inversions Occator

JPL post-doc seminar

A B

16th percentile 50th percentile 84th percentile

BA

A BA B
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XM2 results: MCMC inversions Hanami
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16th percentile 50th percentile 84th percentile

A B
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